# References # RocM Compatibility Matrix [https://rocm.docs.amd.com/en/latest/compatibility/compatibility-matrix.html](https://rocm.docs.amd.com/en/latest/compatibility/compatibility-matrix.html) # RocM Supported GPUs (AMD Radeon) [https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/system-requirements.html](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/system-requirements.html) # Ollama AMD-Radeon [https://github.com/ollama/ollama/blob/main/docs/gpu.md#amd-radeon](https://github.com/ollama/ollama/blob/main/docs/gpu.md#amd-radeon) # PyTorch for AMD ROCm [https://pytorch.org/blog/pytorch-for-amd-rocm-platform-now-available-as-python-package](https://pytorch.org/blog/pytorch-for-amd-rocm-platform-now-available-as-python-package) # 🧠 Realistic GPU Comparison (Arch Linux + Local AI) # 1. Support and Compatibility (Linux / ROCm / CUDA) |Item|**RTX 5070 Ti (Blackwell)**|**RX 9070 XT (RDNA 4)**|**RX 7900 XTX (RDNA 3)**| |:-|:-|:-|:-| |Linux Drivers|Proprietary (NVIDIA 560+)|Open Source (amdgpu + ROCm 6.x)|Open Source (amdgpu + ROCm 6.x)| |PyTorch / ROCm|Full via CUDA/cuDNN|Native ROCm 6.x support|Native ROCm 6.x support| |Ollama|CUDA + TensorRT|ROCm 6.x stable|ROCm 6.x stable| |TensorFlow|Fully supported (CUDA)|Limited, manual build|Limited, manual build| |Linux Kernel|Stable 6.10+|Stable 6.9+|Stable 6.8+| |Blob dependency|High (NVIDIA proprietary)|Low|Low| |PCIe|5.0|5.0|4.0| 🟩 **AMD (RDNA 4 / 9070 XT)** has a clear edge on modern Linux β€” open driver, stable ROCm, direct integration with new kernels. πŸŸ₯ **NVIDIA** still needs its blob + DKMS patching, but CUDA runs perfectly. 🟨 **RDNA 3 (7900 XTX)** now works fine, though ROCm is less refined than RDNA 4. # 2. Practical Performance (AI / Stable Diffusion / LLMs / PyTorch) |Task|**5070 Ti**|**9070 XT**|**7900 XTX**| |:-|:-|:-|:-| |Stable Diffusion XL FP16|\~12 img/min|\~10 img/min|\~9 img/min| |Stable Diffusion XL INT8 (Opt.)|\~17 img/min|\~13 img/min|\~12 img/min| |LLM 7B (Q4) vLLM / Ollama|\~21 tok/s|\~18 tok/s|\~16 tok/s| |LLM 13B (Q4)|VRAM limited (16 GB)|\~14 tok/s|\~14 tok/s| |LLM 33B (Q4)|Doesn’t fit|Light quant only|Light quant only| |CNNs / TorchVision training|CUDA 100% optimized|\~92% of NVIDIA performance|\~88% of NVIDIA performance| 🟩 **5070 Ti** still delivers the most raw throughput for small-to-mid models. 🟨 **9070 XT** gets close and runs everything on stable ROCm. 🟧 **7900 XTX** performs decently now under ROCm but has less efficient AI accelerators. # 3. Memory and Large Models |Item|**5070 Ti**|**9070 XT**|**7900 XTX**| |:-|:-|:-|:-| |VRAM|16 GB GDDR7|16 GB GDDR6|24 GB GDDR6| |Bus Width|256 bits|256 bits|384 bits| |Bandwidth|896 GB/s|640 GB/s|960 GB/s| |Full FP16 model capacity|Up to \~13B|Up to \~13B|Up to \~33B| |Quantized (Q4/Q5)|Up to \~70B|Up to \~70B|Up to \~70B| 🟩 **7900 XTX** still rules in raw VRAM capacity β€” ideal for 33B+ models. 🟨 **9070 XT** matches the 5070 Ti in capacity but with less bandwidth. 🟧 **5070 Ti** compensates with blazing GDDR7. # 4. Thermal, Power, and PSU (given your 850W PSU and solar surplus) |Item|**5070 Ti**|**9070 XT**|**7900 XTX**| |:-|:-|:-|:-| |AI Power Draw|260–310 W|280–320 W|330–380 W| |Typical Temp (open air)|\~68 Β°C|\~72 Β°C|\~78 Β°C| |Recommended PSU|750 W|750 W|850 W| |Compatible with your PSU|βœ…|βœ…|βœ…| 🟩 **All three fit comfortably** β€” your PSU can handle any of them. ⚑ **Power usage doesn’t matter** thanks to your solar overcapacity. # 5. Maintenance and Quality of Life on Arch Linux |Aspect|**5070 Ti**|**9070 XT**|**7900 XTX**| |:-|:-|:-|:-| |Driver install|DKMS + nvidia-dkms|`linux-firmware` \+ `amdgpu`|`linux-firmware` \+ `amdgpu`| |Kernel updates|Requires DKMS rebuild|Plug and play|Plug and play| |ROCm packages (AUR)|n/a|`rocm-dev`, `rocm-opencl`|`rocm-dev`, `rocm-opencl`| |CUDA toolkit|Fully supported|n/a|n/a| |Wayland compatibility|Good (closed driver)|Excellent|Excellent| 🟩 **AMD RDNA 4** wins big on Linux β€” no DKMS pain, full upstream support. πŸŸ₯ **NVIDIA** still breaks after major kernel or Mesa updates. # 6. Cost-Effectiveness and Purpose |Scenario|**5070 Ti**|**9070 XT**|**7900 XTX**| |:-|:-|:-|:-| |Plug-and-play AI|🟩 Best|🟨 Good|🟨 Good| |Open-source Linux AI|πŸŸ₯ Less integrated|🟩 Best balance|🟩 Great VRAM| |Gaming (1080p–4K)|🟩 DLSS 4 & Reflex|🟨 FSR 3.1|🟩 Raw FPS| |Large LLMs|❌ VRAM limit|⚠️ up to 13B|🟩 up to 33B+| |PyTorch training|🟩 CUDA full|🟨 ROCm 6 \~92% perf|🟨 ROCm 6 \~88% perf| |Rolling kernel updates|πŸŸ₯ Needs rebuild|🟩 No issues|🟩 No issues| # 🧾 Final Verdict (for your setup) |Rank|GPU|Reason| |:-|:-|:-| |πŸ₯‡|**RX 9070 XT**|Best balance for Linux + AI + general use. ROCm 6.x is stable, open driver, solid power draw, near-NVIDIA performance. Only lacks TensorRT.| |πŸ₯ˆ|**RTX 5070 Ti**|Highest performance and CUDA compatibility, but less integrated with Arch. Ideal if you rely on CUDA/TensorRT-exclusive tools.| |πŸ₯‰|**RX 7900 XTX**|Massive 24 GB VRAM, hotter and less efficient. Great for running 33B–70B models directly in VRAM. Fully usable now with ROCm 6.x.|