Due to issues with the Internet.ee domain registry, our main domain, paste.ee, is currently disabled due to abuse reports. We are looking into alternative domains to continue operation, but for now the pastee.dev domain is the primary domain.
If you wish to blame someone, blame the scum using this site as a malware host.
Description: GPT Response
Submitted by rimuru on October 4, 2025

New Paste 1 (Markdown)

# References

# RocM Compatibility Matrix

[https://rocm.docs.amd.com/en/latest/compatibility/compatibility-matrix.html](https://rocm.docs.amd.com/en/latest/compatibility/compatibility-matrix.html)

# RocM Supported GPUs (AMD Radeon)

[https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/system-requirements.html](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/system-requirements.html)

# Ollama AMD-Radeon

[https://github.com/ollama/ollama/blob/main/docs/gpu.md#amd-radeon](https://github.com/ollama/ollama/blob/main/docs/gpu.md#amd-radeon)

# PyTorch for AMD ROCm

[https://pytorch.org/blog/pytorch-for-amd-rocm-platform-now-available-as-python-package](https://pytorch.org/blog/pytorch-for-amd-rocm-platform-now-available-as-python-package)

# 🧠 Realistic GPU Comparison (Arch Linux + Local AI)

# 1. Support and Compatibility (Linux / ROCm / CUDA)

|Item|**RTX 5070 Ti (Blackwell)**|**RX 9070 XT (RDNA 4)**|**RX 7900 XTX (RDNA 3)**|
|:-|:-|:-|:-|
|Linux Drivers|Proprietary (NVIDIA 560+)|Open Source (amdgpu + ROCm 6.x)|Open Source (amdgpu + ROCm 6.x)|
|PyTorch / ROCm|Full via CUDA/cuDNN|Native ROCm 6.x support|Native ROCm 6.x support|
|Ollama|CUDA + TensorRT|ROCm 6.x stable|ROCm 6.x stable|
|TensorFlow|Fully supported (CUDA)|Limited, manual build|Limited, manual build|
|Linux Kernel|Stable 6.10+|Stable 6.9+|Stable 6.8+|
|Blob dependency|High (NVIDIA proprietary)|Low|Low|
|PCIe|5.0|5.0|4.0|

🟩 **AMD (RDNA 4 / 9070 XT)** has a clear edge on modern Linux β€” open driver, stable ROCm, direct integration with new kernels.  
πŸŸ₯ **NVIDIA** still needs its blob + DKMS patching, but CUDA runs perfectly.  
🟨 **RDNA 3 (7900 XTX)** now works fine, though ROCm is less refined than RDNA 4.

# 2. Practical Performance (AI / Stable Diffusion / LLMs / PyTorch)

|Task|**5070 Ti**|**9070 XT**|**7900 XTX**|
|:-|:-|:-|:-|
|Stable Diffusion XL FP16|\~12 img/min|\~10 img/min|\~9 img/min|
|Stable Diffusion XL INT8 (Opt.)|\~17 img/min|\~13 img/min|\~12 img/min|
|LLM 7B (Q4) vLLM / Ollama|\~21 tok/s|\~18 tok/s|\~16 tok/s|
|LLM 13B (Q4)|VRAM limited (16 GB)|\~14 tok/s|\~14 tok/s|
|LLM 33B (Q4)|Doesn’t fit|Light quant only|Light quant only|
|CNNs / TorchVision training|CUDA 100% optimized|\~92% of NVIDIA performance|\~88% of NVIDIA performance|

🟩 **5070 Ti** still delivers the most raw throughput for small-to-mid models.  
🟨 **9070 XT** gets close and runs everything on stable ROCm.  
🟧 **7900 XTX** performs decently now under ROCm but has less efficient AI accelerators.

# 3. Memory and Large Models

|Item|**5070 Ti**|**9070 XT**|**7900 XTX**|
|:-|:-|:-|:-|
|VRAM|16 GB GDDR7|16 GB GDDR6|24 GB GDDR6|
|Bus Width|256 bits|256 bits|384 bits|
|Bandwidth|896 GB/s|640 GB/s|960 GB/s|
|Full FP16 model capacity|Up to \~13B|Up to \~13B|Up to \~33B|
|Quantized (Q4/Q5)|Up to \~70B|Up to \~70B|Up to \~70B|

🟩 **7900 XTX** still rules in raw VRAM capacity β€” ideal for 33B+ models.  
🟨 **9070 XT** matches the 5070 Ti in capacity but with less bandwidth.  
🟧 **5070 Ti** compensates with blazing GDDR7.

# 4. Thermal, Power, and PSU (given your 850W PSU and solar surplus)

|Item|**5070 Ti**|**9070 XT**|**7900 XTX**|
|:-|:-|:-|:-|
|AI Power Draw|260–310 W|280–320 W|330–380 W|
|Typical Temp (open air)|\~68 Β°C|\~72 Β°C|\~78 Β°C|
|Recommended PSU|750 W|750 W|850 W|
|Compatible with your PSU|βœ…|βœ…|βœ…|

🟩 **All three fit comfortably** β€” your PSU can handle any of them.  
⚑ **Power usage doesn’t matter** thanks to your solar overcapacity.

# 5. Maintenance and Quality of Life on Arch Linux

|Aspect|**5070 Ti**|**9070 XT**|**7900 XTX**|
|:-|:-|:-|:-|
|Driver install|DKMS + nvidia-dkms|`linux-firmware` \+ `amdgpu`|`linux-firmware` \+ `amdgpu`|
|Kernel updates|Requires DKMS rebuild|Plug and play|Plug and play|
|ROCm packages (AUR)|n/a|`rocm-dev`, `rocm-opencl`|`rocm-dev`, `rocm-opencl`|
|CUDA toolkit|Fully supported|n/a|n/a|
|Wayland compatibility|Good (closed driver)|Excellent|Excellent|

🟩 **AMD RDNA 4** wins big on Linux β€” no DKMS pain, full upstream support.  
πŸŸ₯ **NVIDIA** still breaks after major kernel or Mesa updates.

# 6. Cost-Effectiveness and Purpose

|Scenario|**5070 Ti**|**9070 XT**|**7900 XTX**|
|:-|:-|:-|:-|
|Plug-and-play AI|🟩 Best|🟨 Good|🟨 Good|
|Open-source Linux AI|πŸŸ₯ Less integrated|🟩 Best balance|🟩 Great VRAM|
|Gaming (1080p–4K)|🟩 DLSS 4 & Reflex|🟨 FSR 3.1|🟩 Raw FPS|
|Large LLMs|❌ VRAM limit|⚠️ up to 13B|🟩 up to 33B+|
|PyTorch training|🟩 CUDA full|🟨 ROCm 6 \~92% perf|🟨 ROCm 6 \~88% perf|
|Rolling kernel updates|πŸŸ₯ Needs rebuild|🟩 No issues|🟩 No issues|

# 🧾 Final Verdict (for your setup)

|Rank|GPU|Reason|
|:-|:-|:-|
|πŸ₯‡|**RX 9070 XT**|Best balance for Linux + AI + general use. ROCm 6.x is stable, open driver, solid power draw, near-NVIDIA performance. Only lacks TensorRT.|
|πŸ₯ˆ|**RTX 5070 Ti**|Highest performance and CUDA compatibility, but less integrated with Arch. Ideal if you rely on CUDA/TensorRT-exclusive tools.|
|πŸ₯‰|**RX 7900 XTX**|Massive 24 GB VRAM, hotter and less efficient. Great for running 33B–70B models directly in VRAM. Fully usable now with ROCm 6.x.|