123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108
# References
# RocM Compatibility Matrix
[https://rocm.docs.amd.com/en/latest/compatibility/compatibility-matrix.html](https://rocm.docs.amd.com/en/latest/compatibility/compatibility-matrix.html)
# RocM Supported GPUs (AMD Radeon)
[https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/system-requirements.html](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/system-requirements.html)
# Ollama AMD-Radeon
[https://github.com/ollama/ollama/blob/main/docs/gpu.md#amd-radeon](https://github.com/ollama/ollama/blob/main/docs/gpu.md#amd-radeon)
# PyTorch for AMD ROCm
[https://pytorch.org/blog/pytorch-for-amd-rocm-platform-now-available-as-python-package](https://pytorch.org/blog/pytorch-for-amd-rocm-platform-now-available-as-python-package)
# π§ Realistic GPU Comparison (Arch Linux + Local AI)
# 1. Support and Compatibility (Linux / ROCm / CUDA)
|Item|**RTX 5070 Ti (Blackwell)**|**RX 9070 XT (RDNA 4)**|**RX 7900 XTX (RDNA 3)**|
|:-|:-|:-|:-|
|Linux Drivers|Proprietary (NVIDIA 560+)|Open Source (amdgpu + ROCm 6.x)|Open Source (amdgpu + ROCm 6.x)|
|PyTorch / ROCm|Full via CUDA/cuDNN|Native ROCm 6.x support|Native ROCm 6.x support|
|Ollama|CUDA + TensorRT|ROCm 6.x stable|ROCm 6.x stable|
|TensorFlow|Fully supported (CUDA)|Limited, manual build|Limited, manual build|
|Linux Kernel|Stable 6.10+|Stable 6.9+|Stable 6.8+|
|Blob dependency|High (NVIDIA proprietary)|Low|Low|
|PCIe|5.0|5.0|4.0|
π© **AMD (RDNA 4 / 9070 XT)** has a clear edge on modern Linux β open driver, stable ROCm, direct integration with new kernels.
π₯ **NVIDIA** still needs its blob + DKMS patching, but CUDA runs perfectly.
π¨ **RDNA 3 (7900 XTX)** now works fine, though ROCm is less refined than RDNA 4.
# 2. Practical Performance (AI / Stable Diffusion / LLMs / PyTorch)
|Task|**5070 Ti**|**9070 XT**|**7900 XTX**|
|:-|:-|:-|:-|
|Stable Diffusion XL FP16|\~12 img/min|\~10 img/min|\~9 img/min|
|Stable Diffusion XL INT8 (Opt.)|\~17 img/min|\~13 img/min|\~12 img/min|
|LLM 7B (Q4) vLLM / Ollama|\~21 tok/s|\~18 tok/s|\~16 tok/s|
|LLM 13B (Q4)|VRAM limited (16 GB)|\~14 tok/s|\~14 tok/s|
|LLM 33B (Q4)|Doesnβt fit|Light quant only|Light quant only|
|CNNs / TorchVision training|CUDA 100% optimized|\~92% of NVIDIA performance|\~88% of NVIDIA performance|
π© **5070 Ti** still delivers the most raw throughput for small-to-mid models.
π¨ **9070 XT** gets close and runs everything on stable ROCm.
π§ **7900 XTX** performs decently now under ROCm but has less efficient AI accelerators.
# 3. Memory and Large Models
|Item|**5070 Ti**|**9070 XT**|**7900 XTX**|
|:-|:-|:-|:-|
|VRAM|16 GB GDDR7|16 GB GDDR6|24 GB GDDR6|
|Bus Width|256 bits|256 bits|384 bits|
|Bandwidth|896 GB/s|640 GB/s|960 GB/s|
|Full FP16 model capacity|Up to \~13B|Up to \~13B|Up to \~33B|
|Quantized (Q4/Q5)|Up to \~70B|Up to \~70B|Up to \~70B|
π© **7900 XTX** still rules in raw VRAM capacity β ideal for 33B+ models.
π¨ **9070 XT** matches the 5070 Ti in capacity but with less bandwidth.
π§ **5070 Ti** compensates with blazing GDDR7.
# 4. Thermal, Power, and PSU (given your 850W PSU and solar surplus)
|Item|**5070 Ti**|**9070 XT**|**7900 XTX**|
|:-|:-|:-|:-|
|AI Power Draw|260β310 W|280β320 W|330β380 W|
|Typical Temp (open air)|\~68 Β°C|\~72 Β°C|\~78 Β°C|
|Recommended PSU|750 W|750 W|850 W|
|Compatible with your PSU|β
|β
|β
|
π© **All three fit comfortably** β your PSU can handle any of them.
β‘ **Power usage doesnβt matter** thanks to your solar overcapacity.
# 5. Maintenance and Quality of Life on Arch Linux
|Aspect|**5070 Ti**|**9070 XT**|**7900 XTX**|
|:-|:-|:-|:-|
|Driver install|DKMS + nvidia-dkms|`linux-firmware` \+ `amdgpu`|`linux-firmware` \+ `amdgpu`|
|Kernel updates|Requires DKMS rebuild|Plug and play|Plug and play|
|ROCm packages (AUR)|n/a|`rocm-dev`, `rocm-opencl`|`rocm-dev`, `rocm-opencl`|
|CUDA toolkit|Fully supported|n/a|n/a|
|Wayland compatibility|Good (closed driver)|Excellent|Excellent|
π© **AMD RDNA 4** wins big on Linux β no DKMS pain, full upstream support.
π₯ **NVIDIA** still breaks after major kernel or Mesa updates.
# 6. Cost-Effectiveness and Purpose
|Scenario|**5070 Ti**|**9070 XT**|**7900 XTX**|
|:-|:-|:-|:-|
|Plug-and-play AI|π© Best|π¨ Good|π¨ Good|
|Open-source Linux AI|π₯ Less integrated|π© Best balance|π© Great VRAM|
|Gaming (1080pβ4K)|π© DLSS 4 & Reflex|π¨ FSR 3.1|π© Raw FPS|
|Large LLMs|β VRAM limit|β οΈ up to 13B|π© up to 33B+|
|PyTorch training|π© CUDA full|π¨ ROCm 6 \~92% perf|π¨ ROCm 6 \~88% perf|
|Rolling kernel updates|π₯ Needs rebuild|π© No issues|π© No issues|
# π§Ύ Final Verdict (for your setup)
|Rank|GPU|Reason|
|:-|:-|:-|
|π₯|**RX 9070 XT**|Best balance for Linux + AI + general use. ROCm 6.x is stable, open driver, solid power draw, near-NVIDIA performance. Only lacks TensorRT.|
|π₯|**RTX 5070 Ti**|Highest performance and CUDA compatibility, but less integrated with Arch. Ideal if you rely on CUDA/TensorRT-exclusive tools.|
|π₯|**RX 7900 XTX**|Massive 24 GB VRAM, hotter and less efficient. Great for running 33Bβ70B models directly in VRAM. Fully usable now with ROCm 6.x.|